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The term ‘electroacoustic ’ is used in connection with phenomena that involve the 
interaction of sound waves and electric fields, such as the voltage difference 
generated across a transducer by the passage of a sound wave. This paper is 
concerned with electroacoustic effects in suspensions of electrically charged colloidal 
particles. The existing methods for calculating electroacoustic effects in suspensions 
are limited either to the dilute case, or to one particular effect, namely the open- 
circuit voltage generated between two parallel wire probes by a locally plane sound 
wave, propagating perpendicular to the wires. In this paper we present a procedure 
for calculating any electroacoustic effects in suspensions of arbitrary concentration. 
The only restriction on the method is that the particles must be small compared with 
the sound wavelength. The procedure involves the solution of a set of differential 
equations - referred to here as the ‘electroacoustic equations ’ - for the macroscopic 
pressure, velocity and electrical potential in the suspension. The derivation of these 
equations and the associated boundary conditions form the major part of this paper. 
General features of the solution are also discussed, and an application is given 
involving a novel electroacoustic measurement. 

1. Introduction 
This paper is concerned with electroacoustic effects in colloidal dispersions. The 

aim is to set up the differential equations and boundary conditions which govern the 
distribution of the macroscopic pressure, velocity and electric field in a suspension 
and to discuss general features of the solutions to these equations. With the aid of 
these equations it will be possible to predict electroacoustic effects in terms of 
suspension transport properties, or conversely to obtain transport properties from 
electroacoustic measurements. Since the transport properties are related to the 
suspension microstructure, this latter application could provide a new way of 
probing the microstructure of colloidal suspensions. 

To get some idea of the sort of microstructural information which might be 
obtained in this way, it is instructive to consider one particular electroacoustic effect, 
namely the generation of electric fields by sound waves in a suspension. 

These fields arise from the electric charge on the colloidal particles. This charge is 
balanced in equilibrium by an excess of oppositely charged ions which form a diffuse 
cloud around each particle. This cloud, and the layer of charge on the particle are 
referred to as the electrical double layer. 

As the sound waves pass through the suspension they generate a relative motion 
between the particles and the surrounding liquid. The magnitude of this motion 
depends on the density difference between the particle and the solvent, on the size 
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and shape of the particle, and on the frequency of the sound wave. As a result of this 
relative motion, the diffuse layer distorts, and its centre of charge is displaced from 
that of the particle. Hence each particle generates an alternating electric dipole field, 
and the superposition of these fields leads to the macroscopic electric field referred to 
earlier. 

From this discussion it can be seen that the field generated by a sound wave in a 
suspcnsion depends on the density difference between the particle and solvent, on the 
particle charge, size, shape and concentration. Measurements of this field can 
therefore be used to provide information about these variables. 

In  general, the electroacoustic measurements will depend not only on the transport 
properties of the suspension, but also on the geometry of the device and the means 
by which the sound wave and electric fields are generated and measured. Thus the 
first step in the determination of the microstructure is the extraction of the transport 
properties from the electroacoustic measurement. It is this step which forms the 
subject of this paper. The next step, of relating the transport, properties to the 
microstructure, has already received some preliminary attention (Booth & Enderby 
1952 ; O’Brien 1988 ; Marlowe, Fairhurst & Pendse 1988), and will no doubt form the 
subject of future papers in this area. 

2. Outline of the paper 
In the following two sections we derive the macroscopic momentum and mass 

conservation equations for a suspension. In $5  we introduce two constitutive 
relations for the electric current density and the particle velocity in the suspension. 
By adding the macroscopic charge conservation equation we obtain a complete set 
of equations for the determination of the macroscopic pressure, velocity and electric 
field in the suspension. It is these equations that are referred to here as the 
electroacoustic equations. 

The associated boundary conditions are derived in $6. In  $87 and 8 we discuss 
general features of the solution procedure for the case when the fields are generated 
by the motion of a boundary, and by an applied electric field respectively. Finally in 
$9 an application is presented, involving the interpretation of measurements for a 
novel electroacoustic device. 

3. The momentum equation 
The macroscopic quantities of interest in a suspension can usually be written as 

spatial averages over volumes large enough to enclose a large number of particles but 
small in comparison with the macroscopic lengthscales (Bat,chelor 1970). In  this 
problem the smallest macroscopic lengthscale is likely to be the sound wavelength A,  
which a t  a typical frequency of 1 MHzt is around 1.5 mm in water. For this 
averaging procedure to be valid, the particles must be much smaller than A,  a 
restriction which is usually satisfied in practice. 

On applying the momentum equation to  such a sample volume, and neglecting 
products of the various macroscopic disturbances, we obtain 

an 
at 

<Po)- = -v .c  

t The existing commercial electroacoustic devices by Matec Applied Sciences and Penkem 
operate at 1 MHz and 200 kHz respectively. 
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where (pa)  is the equilibrium suspension densit)y, C is the bulk stress tensor, and 

is the macroscopic momentum per unit mass of suspension. 
The stress tensor can be written as the sum 

C = - ( p )  I+ (a') +x,, (3.3) 

where the angle brackets denote volume averages of the local pressure p and 
deviatoric stress d in the suspension, and C, is the contribution from interparticle 
forces. Of these three components, the pressure term dominates, as demonstrated by 
following order of magnitude estimates. 

Consider first the pressure term. If this really is dominant, then the pressure 
gradient must balance the inertia term in (3.1). Assuming ( p )  varies on a lengthscale 
of order A ,  we get the estimate 

for the pressure, where U is a typical suspension velocity. 
An estimate for the local deviatoric stresses can be obtained by dividing the 

typical viscous force on the particle by its surface area. In the case when the 
electroacoustic effects arise from the motion of a boundary, the viscous force and the 
interparticle forces are driven by the inertia forces on the particle. It therefore seems 
reasonable to assume that the viscous force will be the same order of magnitude, or 
less than, the inertia force. Dividing the inertia force by the particle area, we obtain 
the estimate 

for the viscous stresses. Here pp is the density and a the radius of the particle. In 
making this estimate i t  has been assumed that t h e  particle velocity is of the same 
order as that  of the suspension. On dividing this quantity by the estimate (3.4) for 
the pressure, we obtain the ratio a/h ,  which is assumed to be small in this study. 

The interparticle forces will presumably also be of the same order as the particle 
inertia force pp a3wU, since they must balance the inertia and viscous forces. Taking 
the lengthscale of the interaction to be O(a), and assuming that each particle 
interacts with one or so neighbours, we find that the particle stress term C, will be 
of order 

Once again, this is negligible in comparison with the pressure estimate (3.4) if a / h  is 
small. 

Thus we can approximate the bulk stress in the suspension by the volume average 
of the local pressure. With this approximation, the momentum equation (3.1) 
becomes 

(Po)  wuh (3.4) 

P p  

aa 
(Po), = -V(P>. (3.5) 

4. The mass conservation equation 

neglecting the products of small terms, we get 
Applying the principal of mass conservation to a sample volume V ,  and again 
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This equatiofi, and the momentum equation (3.5) in the previous section have the 
same form as the sound equations in a pure liquid. In  the latter case the equations 
are completed by evoking an equilibrium relation between the density and the 
pressure. In a suspension the situation is more complicated however, for the density 
depends on the particle concentration as well as the pressure. 

To find the relation between density, pressure and concentration changes, we must 
first write a(p) /a t  as an integral over the particles and the solvent. This step contains 
an interesting subtlety, which arises from the fact that the local density changes 
discontinuously a t  a point when it  is crossed by a particle surface. Thus ap/at 
involves delta functions a t  the particle surface. When this is taken into account the 
expression for a(p) /a t  becomes 

where the first term on the right-hand side is the average of +plat over the sample 
volhme excluding the particle surfaces. The second term, which arises from the delta 
functions, involves a sum over the particle surfaces lying within the sample volume. 
Ap denotes the particle density minus that of the liquid, and A is the unit outward 
normal a t  the particle surface. 

It is conveniknt to rewrite the sum in (4.2) as 

(4.3) 

where the first term extends over closed particle surfaces. Those particle surfaces that 
are cut by the sample volume boundary are closed in this sum by the addition of the 
surface A;, formed by the intersection of the particles and the sample volume. The 
second sum is included to cancel these added terms. 

This second term can be written as 

- $We (U) 

where (U) is the average particle velocity and $ is the particle volume fraction, 
assumed to be uniform. On applying the mass conservation equation to the 
individual particles, we find that the first term in (4.3) becomes 

where the average extends over the particle volume only. 
Combining these expressions with (4.2), we find 

-- at - ($)-$$(%)-$ApV-(U). (4.4) 

The first two terms on the right-hand side depend on the pressure, while the third 
term is related to the rate of change of the particle number density. 

Since the macroscopic pressure ( p )  varies on a lengthscale large compared with 
the sample volume, we may take ( p )  to  be spatially uniform in calculating the first 
two terms on the right-hand side of (4.4). The calculation of these two terms thus 
involves the determination of the local density changes caused by a uniform pressure 
change throughout the sample volume. Since we are neglecting products of small 
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disturbances in this analysis, these terms in (4.4) should be a linear functional of 
( p ( t ) ) .  Thus in the case of an oscillating pressure field, (4.4) can be written in the 
form 

(4.5) 

where p' and p' are the variations in ( p )  and ( p )  respectively, and an eiot form has 
been assumed for these variations. 

Although the calculation of suspension properties, such as x, is beyond the scope 
of this paper, there are two interesting aspects to the calculation of x which deserve 
mention. 

First, the compression and expansion of a suspension causes the particles and fluid 
to heat up or cool down at  different rates. If the fluid heats up more than the 
particles, heat will pass into the particles. As a result, the density changes in the 
particle and in the liquid will differ from the values for an adiabatic compression. 
Furthermore, if the period of the pressure field is of the same order as the time 
required for heat to diffuse through a distance of the order of the particle radius, 
there will be a phase difference between the pressure and density changes. This leads 
to dissipation in the suspension. Allegra & Hawley (1971) calculated this thermal 
dissipation effect for a dilute suspension and found it to be unimportant compared 
to the viscous dissipation, except in the case of suspensions in which the particle 
density is nearly equal to that of the solvent. In the latter case, the viscous 
dissipation, which arises from a velocity difference between the particles and solvent, 
is small. This viscous dissipation effect will be discussed in $5 .  

The second interesting feature of the x calculation, arises from the possibility that 
the surface charge - which often involves the dissociation of some surface group - 
may depend on the pressure. In this case the sound wave would cause a fluctuation 
in the surface charge. If the dissociation reaction involves a volume change, or if the 
fluid is locally heated by the reaction, the compressibility will be altered. This gives 
rise to another type of dissipation at  frequencies around the characteristic frequency 
for the surface reaction. In pure electrolytes this effect is called Ultrasonic 
Relaxation Spectroscopy (Slutsky 1981), and measurements of the dissipation are 
used to study electrolyte reactions. Judging by the typical volumetric changes 
involved in such reactions (Slutsky 1981, p. 201) it seems unlikely that this 
dissipation effect will be significant in suspensions, except again in the case of 
particles with density near that of the solvent. 

iwp' = iwxp' - $ApQ - ( U), 

5. The electroacoustic equations 
At present we have three equations, (3.5), (4.1) and (4.5) with four unknowns, viz. 

p', p', ii and (U). To complete the set we must invoke constitutive relations for the 
suspension. 

For the small disturbances assumed here, the macroscopic fluxes will be linear 
functions of the applied macroscopic electric field and pressure gradient. Hence the 
average particle velocity (U) will be given by an expression of the form 

(u> = a V ( p ) + p E < E ) ,  (5.1) 

where a and pE are suspension transport properties. In the case of dilute suspensions 
with steady fields, pE is called the electrophoretic mobility (Hunter 1981, $3.3). This 
term will also be used for the p E  defined here, but i t  should be born in mind that pE 
is a function of frequency in this case, and that it is defined as the velocity per unit 
field with zero pressure gradient. As we shall show in Q 8, the application of an electric 
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field to a concentrated suspension gives rise to pressure gradients which make a 
substantial contribution to the particle motion. Thus ,uE is not simply equal to the 
velocity per unit field, as might be expected by readers who are familiar with the 
definition for dilute suspensions. 

Although the constitutive relation (5.1) provides us with an extra equation, it also 
contains another unknown, namely the field ( E ) .  To complete the set we must add 
the constitutive relation 

(i> = K*(E) +yV<p) ,  (5.2) 

for the total current density (i), together with the charge conservation equation 
(O'Brien 1982, $3) 

where K* is the complex conductivity of the suspension. 

by the reciprocal relation 

V - ( i )  = 0, (5.3) 

In my earlier paper on this topic, I showed that the quantities y and ,uE are linked 

(5.4) 
AP 

= -$PE 
P 

in the case of dilute monodisperse suspensions, where p is the solvent density. In the 
appendix to this paper i t  is shown that the relation (5.4) holds for any suspension of 
solid particles with fixed charge, provided only that the radius is small compared 
with the wavelength. Judging by the general nature of other reciprocal relations, it 
seems likely that this restriction to solid particles and fixed charge is an artifact of 
thc proof, and that the relation (5.4) should apply to any suspension of particles 
small compared with A .  

The equation (4.5) for the macroscopic density fluctuations contains the term 
V . (  U). On taking the divergence of the formula (5.1) for 
(5.3), we find 

With the aid of the reciprocal relation (5.4) we can write 

( U ) ,  and using (5.2) and 

this as 

Assuming that the particle velocity due to the pressure gradient is the same order 
of magnitude as the macroscopic velocity, we obtain the estimate l l p w  for the 
quantity a. Using typical values of lo-' M2 V -' s-l for ,uE and R-' M-l for K*, 
we find that the quantity 

(5.6) ' 'P(P'E)* = 0 10-4$- 
apK * ( 3 

a t  a frequency of 1 MHz with water as the solvent. 
Thus, to a good approximation, we may write 

w - ( U) = aV'(p)  
in placc of (5.5). 

Combining this result with the mass conservation equations (4.1) and (4.5) we get 

(Po> v -  = - iWX<P) + @ p a V 2 < p ) ,  (5.7) 

where the pressure ( p )  is now measured relative to the equilibrium value. 
The above equation and the force balance equation (3.5) provide the complete set 

for the determination of ( p )  and ii, provided appropriate boundary conditions are 
supplied. 
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Combining (5.7) with (3.5), we obtain an equation for the macroscopic pressure, 
viz. 

This equation yields plane-wave solutions of the form p ,  ei(wt-kx) , where 

(1 + iw$Apa) V 2 ( p )  + w 2 x ( p )  = 0. 

k2 = w 2 x / (  1 + iw$Apa). 

If 01 has a real component, the plane wave will decay in amplitude. From (5.1) and 
the momentum equation (3.5) i t  can be seen that a real component to a corresponds 
to a particle velocity out of phase with the bulk, indicating a relative motion between 
the particle and fluid. This relative motion leads to  the viscous dissipation which is 
responsible for the decay in the wave amplitude. Judging by results for dilute 
suspensions (Ternkin 1981, $06.9, 6,lO) the real part of a peaks at a frequency w 
around v /a2 ,  where v is the kinematic viscosity and a is the particle radius, and that 
peak value is of order l l p w .  Thus a t  these frequencies, the decay in amplitude of a 
plane-wave per wavelength will be of order $Ap/p. Unless the suspension is dilute, 
or Aplp is small, sound waves will tend to be confined within a few wavelengths of 
the boundaries a t  these frequencies. 

In addition to the dissipation mechanisms discussed so far there may also be a very 
significant dissipation caused by bubbles in the suspension (Lighthill 1978, 9 1.6). 
Provided the bubbles are small, this effect can be incorporated into the bulk 
compressibility factor x, which will then have an imaginary component at frequencies 
near the resonant frequency of the bubbles. 

6. The electroacoustic boundary conditions 
The boundary conditions for electroacoustic problems are obtained by applying 

conservation equations to slab-shaped boundaries lying on the macroscopic surface 
of the suspension. 

From the current conservation equation 

we find that 

V . ( i )  = 0, 

( i ) . i i  

is continuous a t  an interface, where ri is the unit normal to that surface. 
An application of the mass conservation equation to the slab yields (O’Brien 1988, 

§5) 

where uB is the velocity of the boundary. 
Finally, from a force balance on the slab, we find that 

o*ti = ( p > A ,  

where o is the stress tensor in the material that forms the boundary 

7. Electroacoustic effects caused by the motion of a solid boundary 
The electroacoustic equations can be simplified in the case when the effects are 

caused by either a boundary motion, or an applied electric field acting separately. 
In this section we shall consider the case of excitation by boundary motion; we 

shall turn to the electric field excitation in 98. Since the electroacoustic equations and 

4 FLM d l 2  
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boundary conditions are linear, any excitation can be written as a superposition of 
these two modes. 

From the current balance equation (5 .3)  and the constitutive formula (5.2) for the 
current density, we find that the field generated by a boundary motion is of order 

Thus in the formula (5.1) for the average particle motion, the ratio of the term p E ( E )  
to uV(p) ,  is of order 

$7 K*u ' 

In $5 it was shown this ratio is typically very small. To a good approximation we can 
therefore neglect the effect of the macroscopic electric field on the particle motion in 
this case. 

Since the equations (3.5) and (5.7) for ii and ( p )  do not involve ( E ) ,  the only way 
that the field can affect these quantities is through its effect on the particle velocity 
in the boundary condition (6.2), but as we have seen, this effect is negligible. Hence 
when the waves are generated by the motion o f a  boundary, the velocity and pressure 
field can be calculated independently of the electric field. 

Once ( p )  has been determined, the electric field can then be obtained from the 
solution of Poisson's equation 

AP 

obtained from the current conservation equation (5.3) and the formula (5.2) for the 
current density. 

Rather than solve Poisson's equation directly however, i t  is more convenient to 
introduce a modified potential f ,  defined by 

This quantity satisfies Laplace's equation and, on a conducting surface, it satisfies 
the boundary condition 

where V is the true potential of the conductor. Clearly the pressure on a conducting 
surface is equivalent electrically to an applied voltage. That equivalent voltage is 
usually quite small; using the values of pE and K* quoted earlier, we find that a one 
atmosphere pressure amplitude is equivalent to about 

AP 10-1q5 - volts. 
P 

In  this analysis we have so far neglected electroacoustic effects that arise directly 
from the background electrolyte. If we regard the electrolyte ions as suspended 
particles, their contribution to the equivalent voltage in (7.1) will be 
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The ionic mobilities pj are typically of the same order as that of the particle, so the 
elect.rolyt,e contribution is significant if the electrolyte mass is comparable with thc 
particle mass in the suspension. For lop3 M KCI, the electrolyte accounts for roughly 

of the total mass, while the particle contribution is q5Aplp. Thus in most cases 
the particles provide the dominant electroacoustic effect. 

8. An applied electric field 
The phenomenon of sound waves generated by an alternating electric field in a 

suspension was only recently discovered by Cannon and his coworkers (Cannon, Oja 
& Petersen 1985). 

Mathematically speaking, the macroscopic motion arises for the particle term in 
the boundary condition (6.2); the particles generate a mass flux a t  the boundaries. 
With the estimate pE E for (U), we find from (6.2) that the macroscopic velocity in 
this case is of order 

and hence the pressure gradients due to the electric field are of order 

@@PP E E.  
Using the estimate of p E  given in $ 5 ,  we see that a field of lo4 V M-' at 1 MHz will 
produce a pressure amplitude of order 105($Ap/p)  N M-', or q5Aplp atmospheres : not 
a pressure that is likely to cause any damage, but a measurable effect, nonetheless. 
Using the above estimate for the pressure gradient, we find that the current formula 
(5.2) can be approximat'ed by the usual relation 

(i) = K*(E) 
in this case. 

The current conservation equation (5.3) therefore reduces to Laplace's equation 
for the potential, and hence the electric field distribution is unaffected by the sound 
waves that are excited by that field. 

Although the current is unaffected by the sound waves, the same is not true of the 
particle motion. For if we use the above estimate for the pressure gradient, we find 
that the ratio of the pressure term to the field term in the expression (5.1) for the 
particle velocity is of order #Ap/p. 

Thus when an alternating electric field is applied to a concentrated suspension, the 
particle velocity is not simply equal to p E ( E )  as might be expected. Instead the 
particle velocity will depend on position in the sound wave field, which in turn 
depends on the device geometry. This is a point which was raised in $5, when the 
quantity p E  was defined, for p E  is not simply the particle velocity per unit field, it 
is the particle velocity per unit field with zero pressure gradient. The simplest way 
to measure that mobility is not by direct observation of particle motion (since the 
pressure gradient will usually be non-zero), but by making electroacoustic 
measurements, as illustrated in the following example. 

9. An application 
Until recently, electroacoustic research has focused on a quantity known as the 

Colloid Vibration Potentialf.(CVP). This is defined as the open-circuit voltage 

f In the case of a pure electrolyte, the term Ionic Vibration Potential is used. 
1.2 
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between two parallel fine-wire probes aligned perpendicular to the direction of 
propagation in a planc-wave field (Zana & Yaeger 1981). 

The calculation of the CVY involves the solution of Laplace's equation for the 
modified potential $' subject to the boundary condition (7 .1)  on each electrode, 
together with the requirements that no current passes on to the electrodes, and 
f i -0  far from the electrodes. The solution to  this problem is of course given by 
$' 3 0. From (7 .1)  it follows that the CVP is given by 

where A(p>  is the pressure difference between the two wires. This result is equivalent 
to the formula obtained by the traditional method of summing the electric fields due 
to the individual parCicle dipoles (O'Brien 1988, §4), a procedure t,hat is limited to 
open-circuit measurements in a plane-wave field. 

Suppose now that instead of measuring the open-circuit voltage, the probes are 
wired up to measure the short-circuit current. To determine this current, we must 
again solve Laplace's equation for $', subject to the same boundary conditions, 
except that now the potential V is the same on each wire. 

Mathematically, this problem is identical to that of determining the electrostatic 
potential around two parallel wires held at a known potential difference. In this case 
the 'potential ' difference arises from a pressure difference between the two wires. By 
representing the wires as a two-dimensional source-sink pair, we find that the - 
potential is given by 

{In rl -In r2 } ,  @' = 4 - 2  APP A<P> 
p K*2ln(a/d) 

where T~ and r2 are distance from the centre of each wire, a is the wire radius and d 
the wire separation. Prom this it follows that the current passing between the wires 
i s  

Unlike the CVP, this quantity is independent of the suspension conductivity, and 
therefore provides a more direct measure of the mobility pE than the traditional 
electroacoustic devices. 

Appendix. The electroacoustic reciprocal relation 

field are governed by the equations (O'Brien 1988, $ 2 )  
The microscopic disturbances caused by a sound wave, or an alternating electric 

V - f ;  = -iwSnj, 

V.a-SpEV$'-peVG$ = iwpu 

and v-u = 0. 

Here $' refers to the local equilibrium electrical potential and 

N 

pk = 2 ezjnjO 
j=1 
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is the equilibrium charge density, where nI is the number density and ezI the charge 
on the j t h  ionic species, and N the number of such species. Q is the local 
hydrodynamic stress tensor, and$ is the flux density of the j t h  ionic species, given 

As usual, DI denotes the ionic diffusivity, and e is the permittivity of the solvent. At 
the frequencies of intercst hcrc, E is approximately equal to the static permittivity. 

The incompressibility constraint (A 4) is invoked on the assumption that the 
wavelength is much greater than the particle radius and any other lengthscales 
associated with the microscopic disturbances. 

The reciprocal relation is obtained from an analysis of the expression 

where the superscripts a and b denote two solutions with different macroscopic 
pressure gradients and electric fields. V is the volume enclosed by the surface A. 

If the radii of curvature ofA are much greater than the average particle separation, 
then A can be subdivided into portions that are small enough to be treated as flat, but 
large enough to pass through a representative sample of suspension (O'Bricn 1979, 
$3).  By using this fact, together with the statistical homogeneity of the various 
disturbances, it can be shown (O'Brien 1988, $3) that the term (A 7 )  is equal to 

- ( u ) ~  - V ( P ) ~  + (i)" ( E)b,  (A 8) 
in the limit of large 8. 

unaffected by an exchange of the superscripts a and b. 
To establish the reciprocal relation we must first show that (A 7) and (A 8) are 

With the aid of the Divergence Theorem and (A 1)-(A 6), we can write (A 7)  as 

Here e denotes the rate of strain tensor and p is the solvent viscosity. Xp rcprcsents 
a sum over the particles enclosed by A ,  and A ,  denotes a particle surface. For those 
particles cut by A ,  A ,  is the particle surface within A ,  plus the portion of A 
intersecting the particle. Finally, V ,  is the liquid volume within V .  

Clearly, the volume integral in (A 9) is unaffected by an exchange of a and b.  The 
difficult part of the proof lies in showing that the particle sum is also unaffected by 
an exchange of a and b.  

In  the long-wavelength approximation used here, the solid particles can be treated 
as rigid bodies. Hence the particle integral in (A 9) can be written as 
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where F and Tare  the net hydrodynamic force and torque on the particle, 51 is the 
angular velocity, and U the translational velocity of the particle centre of mass. The 
term involving f;- ny u has been dropped on the assumption that the particle has a 
fixed charge ; hence in a frame of reference moving with the particle the flux of ions 
into the surface is zero. 

With the aid of Newton's second law, we can write (A 10) in the form 
I r 

where M is the particle mass, and I the inertia tensor. The quantities FE and TE are 
the force and torque on the particle due to non-hydrodynamic forces such as 
electrical or Van der Waals forces between part,icles. 

The term in square brackets in (A 11) has the required symmetry property. The 
symmetry of the remaining term can be demonstrated by the following thermo- 
dynamic argument. 

To begin with we note that the terms FE and TE depend only on the instantaneous 
particle configuration and on the electric field distribution at the particle surface, 
since the Maxwell stresses are determined by that field. Furthermore, that electric 
field is in turn uniquely determined by the instantaneous particle orientation and 
position, and the potential over the particle surface ; a result which follows from the 
uniqueness theorem for Poisson's equation (Protter & Weinberger 1967, $2.4) 

VZSli/ = - Sx. vp; 

for the potential inside the fixed charge particle, where Sx is the local displacement 
of the particle from its equilibrium position. 

Thus FE and TE are determined by the instantaneous particle configurations and 
the potential on the particle surfaces, irrespective of how that configuration and 
potential distribution are achieved. They could for example be set up in a reversible 
manner by the application of forces to the particles, and by the transfer of charge to 
conducting surfaces arranged around each particle in a way to achieve the desired 
potential distribution. 

In the latter case FE and TE can be written as derivatives of the free energy 9 with 
respect to particle displacement and orientation. Similarly the potential S* on the 
particle surface can be written as the derivative of the free energy with respect to 

charge CT, where i. ii 
u = --dA. 

Since the system is only slightly perturbed from equilibrium, 9 can be approximated 
1W 

1 a 2 9  
9 = F0+-- xj xj, 2 axi ax, 

by the quadratic form 

where x j  denotes the generalized displacement, and the repeated subscripts imply a 
summation. 

In  this notation, the square bracketed term in (A 11) becomes 

which clearly has the required symmetry property. 
Hence (A 8) is unaffected by an exchange of a and b. By choosing V(p)" and ( E ) b  

- to be zero, we obtain 
(U)".V(~)~ = ( i>'-(E)".  (A 12) 
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The left-hand side can be rewritten in terms of the average particle velocity, by using 
the fact that  

a result which follows directly from the definitions of the momentum and volume- 
averaged velocities. In  case (a) ,  ii is zero, since there is no pressure gradient to drive 
the momentum. Thus (A 12) can be written as 

-$( AP U)a.V(p)b = ( i ) b - ( E ) a .  
P 

On substituting (5.1) and (5.2) for (U) and ( E )  in the above result we get the 
required relation, viz. 

(A 13) AP Y = - 4 P E '  
P 

In  deriving this result i t  has been assumed that the particle charge is fixed. 
Although it seems likely that the result (A 13) applies to all suspensions, any attempt 
to allow for charge variation in the particle seems to  require the use of some specific 
model - such as surface site dissociation (Hunter 1981,§6.3) - to describe that charge 
variation. I have been deterred from attempting such a proof by the increase in 
complication which would accompany such a model, and by the fact that  the result 
would still not be completely general. 
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